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 Nonlinear and curvature effects on peristaltic flow of 

(Cu–𝐀𝐥𝟐𝐎𝟑) Hybrid Nanofluid in a Channel with 

Heat Transfer 

Submitted by 
Mostafa Goda Keshta 

Arab East College, Riyadh, Saudi Arabia.  

An asymptotic solution is obtained to second order in the wave number, a ratio of 

channel width to the wavelength, giving the curvature effects. A domain transformation 

is used to transform the channel of variable cross section to a uniform cross section, and 

this facilitates in easy way of finding closed form solutions at higher orders. The relation 

connecting the pressure gradient and time rate of flux is obtained.  The analysis also 

includes three different shapes of copper Nano-composites, namely, platelet, cylinder 

and brick- shaped. The impact of various embedded parameters on the flow and heat 

transfer distributions have been demonstrated through the graphs. All the flow 

properties, temperature profile and rate of heat transfer at the walls are greatly 

In this investigation, the flow of an incompressible 

viscous fluid driven by the travelling waves along the 

boundaries of a symmetric channel is studied when 

inertia and streamline curvature effects are not 

negligible, where the flow of Al2O3 / blood nanofluid 

and (Cu–Al2O3) / blood hybrid Nano fluid has been 

employed to investigate the behaviour of flow and heat 

transfer. 

Abstract 
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influenced by the presence of copper nanoparticles. Furthermore, it was observed that 

the platelet shaped Nano-composites provide a better heat transfer ability as compared 

to the other shapes of Nano-particles. The effects of inertia and curvature on pumping, 

trapping and shear stress are discussed for symmetric channels and compared with the 

existing results in the literature. 

Keywords:  (Cu–𝐀𝐥𝟐𝐎𝟑) / blood hybrid Nano fluid; heat transfer; inertia; 

curvature; peristaltic flow. 

1 Introduction: - 

Hybrid Nano-fluids have an active role in a large area of the applications of heat transfer 

like the heating of solar, cooling in buildings, heating in buildings, nuclear cooling, 

generators cooling, electric cooling, refrigeration, lubrications, thermal storage, welding 

and automobile radiators. Also play an active role in the industry, where exist a lot of 

the applications and features such high thermal efficiency and chemical stability. In 

these applications the hybrid nano fluids depend on these features can perform 

efficiently if we compare it with nanofluids. Hybrid Nano-fluids are made by dispersing 

two or more variant kinds of nanoparticles in base fluid or composite tiny structure in a 

base fluid .In addition to it result development  the  pressure drop  and heat transfer  

features through exchange between minuses and pluses of unique suspension .it is 

reported that about only 5% of (Cu–Al2O3) nanoparticles refer to rising the average 

of Nusselt number 𝑁𝑢̅̅ ̅̅  to 5.4 from 4.9 but if we add 5% of (Al2O3) nanoparticles will 

find the average of Nusselt number 𝑁𝑢̅̅ ̅̅  rise 4.9  to 5.36.So we can say that Hybrid 

Nano-fluids are an advanced kind of nanofluids which show a noticeable thermal 

efficiency compared with nanofluids. There are a lot of studies in this field introduce 
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 different models which demonstrate the effects of nanocomposite shapes such as the 

platelet- shaped, cylinder- shaped and brick- shaped. In the other hand when we choose 

the materials of the particles which can improve the positive advantages of each other 

and hide the disadvantages of just one material for example  Al2O3  is lower thermal 

conductivity as compared to the metallic nanoparticles such as zinc, Aluminium, copper 

etc, which include great thermal conductivity. It is necessary to say that the addition of 

metallic tiny particles like copper (Cu) into a nanofluid based on Al2O3  nanoparticles 

can improve the properties of thermo physical of the blend. 

in this paper we consider (Cu–Al2O3) / blood hybrid Nano fluid flow driven by the 

travelling sinusoidal waves along the upper and lower walls of a symmetric channel 

when streamline curvature and inertia effects are in our accounts. The solution is 

obtained up to second order in  𝛿  which is the ratio between channel width and 

wavelength .in order to find complete closed form solutions at higher orders we choose 

a transformation to transform the channel of variable cross section to a uniform cross 

section (the domain of the variable cross section channel into a channel with straight 

walls). The effects of streamline curvature and inertia on trapping, shear stress and 

pumping are discussed with hybrid nano-fluids. 

 Peristaltic pumping is the mechanism of transport of fluid by a wave of expansion or 

contraction from lower pressure to higher pressure regions. In general, we can prescribe 

peristalsis, the process of pumping fluids in a tube or channel and represent it here by 

an infinite train of progressive sinusoidal waves in the walls of a two dimensional of a 

symmetric channel with respect to the centreline. we have two approaches to deal with 

the problems of peristaltic pumping, the first in the laboratory (fixed) frame and other 

in wave(moving) frame. By following these methods, many specialists in engineering 
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and applied mathematics have studied the mechanical aspects of fluids in flows. Since 

the presence of moving boundaries and nonlinearities we find that the analytical 

solution for the general problem is not easy so, it is necessary to find general simplifying 

assumptions in addition to fluid flow parameters and geometrical parameters. 

2 The mathematical description 

Contemplate peristaltic transport of a viscous incompressible Newtonian blood - based 

(Cu-𝐴𝑙2𝑂3) hybrid nano fluid flow in a symmetric channel with supple walls. The 

channel is generated by sinusoidal waves on the channel walls travelling with speed   𝑐 

and amplitude 𝑎 .The lower and upper walls of the channel are maintained at the 

different temperatures  𝑇𝑙  and  𝑇𝑢  . 

Consider the Cartesian coordinate system in the fixed frame (�̅�, �̅�), the diagram of the 

symmetric channel is given by (Fig.1) 

�̅�(�̅�, 𝑡)̅ = �̅� = 𝑑 + 𝑠(�̅� − 𝑐𝑡̅)  ,                𝑇 = 𝑇𝑢                   Upper wall                          

�̅�(�̅�, 𝑡)̅ = −�̅� = −𝑑 − 𝑠(�̅� − 𝑐𝑡̅) ,              𝑇 = 𝑇𝑙                     Lower wall                          (2.1) 

Where  𝑠  is an arbitrary periodic function, 𝑡̅ is the time and  𝑑 is the half mean width 

of the symmetric channel. In order to study the motion in wave frame, we Consider the 

Cartesian coordinate system in the wave frame (𝑥, 𝑦). 

If  we assume  that  the  pressure  difference Δ𝑝 across the channel is constant [3] and 

the length of the channel  L is an integral multiple  of  the  wavelength  𝜆 ,the motion in 

wave frame remains steady  and the  velocity of the waves on the walls is the same  𝐶 

.In order to convert  from the  fixed frame to the wave frame ,we have the 

transformation  
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 �̅� − 𝑐𝑡̅ = 𝑥,  �̅� = 𝑦  ,     �̅� − 𝑐 = 𝑢       , �̅� = 𝑣     ,   and         �̅�(�̅�, �̅�, 𝑡̅) = 𝑝(𝑥, 𝑦)        (2.2)  

Where (�̅�, �̅�)  and   (𝑢, 𝑣) are the velocity components, �̅� and  𝑝  are the pressure in 

the fixed and wave frames of reference, respectively. 

 

Fig .  1.  Hybrid Nano fluid flow due to peristaltic waves with the same amplitude (𝑎) 

on  the walls of a two-dimensional symmetric channel.  

The governing equations of the  hybrid Nano fluid  in a symmetric channel  with  

different shapes  of  nanoparticles  in  a moving  frame  for mass ,momentum  and  

energy are  followed  by :- 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 , 

𝜌ℎ𝑛𝑓 [𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑥
+

𝜇𝑓

(1−𝜙1)5 2⁄ (1−𝜙2)5 2⁄ [
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2] ,  

𝜌ℎ𝑛𝑓 [𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
] = −

𝜕𝑝

𝜕𝑦
+

𝜇𝑓

(1−𝜙1)5 2⁄ (1−𝜙2)5 2⁄ [
𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2
] ,                                     (2.3) 

(𝜌𝐶𝑝)ℎ𝑛𝑓 [𝑢
𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
] = 𝐾𝑏𝑓

𝐾𝑠2+(𝑚−1)𝐾𝑏𝑓−(𝑚−1)𝜙2(𝐾𝑏𝑓−𝐾𝑠2)

𝐾𝑠2+(𝑚−1)𝐾𝑏𝑓+𝜙2(𝐾𝑏𝑓−𝐾𝑠2)
 [

𝜕2𝑇

𝜕𝑥2
+

𝜕2𝑇

𝜕𝑦2
] , 
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Where   𝜇ℎ𝑛𝑓 , 𝜌ℎ𝑛𝑓  , 𝐶𝑝  and  𝑇 are the effective dynamic viscosity of the hybrid 

Nano fluid, effective density of the hybrid Nano fluid, specific heat at constant pressure 

and temperature. We have in the hybrid Nano fluid:- 

𝜇ℎ𝑛𝑓 =
𝜇𝑓

(1−𝜙1)5 2⁄ (1−𝜙2)5 2⁄  , 

(𝜌𝐶𝑝)ℎ𝑛𝑓 = (1 − 𝜙2) {(1 − 𝜙1)(𝜌𝐶𝑝)
𝑓

+ (𝜌𝐶𝑝)
𝑠1

𝜙1} + 𝜙2(𝜌𝐶𝑝)
𝑠2

 , 

𝜌ℎ𝑛𝑓 = (1 − 𝜙2){(1 − 𝜙1)𝜌𝑓 + 𝜌𝑠1
𝜙1} + 𝜙2𝜌𝑠2

 , 

𝐾ℎ𝑛𝑓 = 𝐾𝑏𝑓
𝐾𝑠2+(𝑚−1)𝐾𝑏𝑓−(𝑚−1)𝜙2(𝐾𝑏𝑓−𝐾𝑠2)

𝐾𝑠2+(𝑚−1)𝐾𝑏𝑓+𝜙2(𝐾𝑏𝑓−𝐾𝑠2)
 , 

𝐾𝑏𝑓 = 𝐾𝑓
𝐾𝑠1+(𝑛−1)𝐾𝑓−(𝑛−1)𝜙1(𝐾𝑓−𝐾𝑠1)

𝐾𝑠1+(𝑛−1)𝐾𝑓+𝜙1(𝐾𝑓−𝐾𝑠1)
 , 

We have  from  this relations 𝑚, 𝑛  are the shape factor of  Cu and  𝐴𝑙2𝑂3  

nanoparticles respectively .Also 𝐾𝑓 , 𝐾𝑏𝑓 , 𝐾𝑠1
, 𝐾𝑠2

 , 𝜙1 , 𝜙2 , 𝜇𝑓  , 𝜌𝑓  , (𝐶𝑝)
𝑓

 , 

𝜌𝑠1
 , 𝜌𝑠2

 , (𝐶𝑝)
𝑠1

    and  (𝜌𝐶𝑝)
𝑠2

 are  thermal conductivity of the base fluid 

(blood) , thermal conductivity of  𝐴𝑙2𝑂3 -nanofluid , thermal conductivity of  𝐴𝑙2𝑂3 

, thermal conductivity of  Cu ,volume fraction of 𝐴𝑙2𝑂3 nanoparticles , volume fraction 

of Cu  nanoparticles , the base fluid viscosity , the base fluid density , specific heat , the  

density of  𝐴𝑙2𝑂3 , the  density of  Cu ,  specific heat of  𝐴𝑙2𝑂3  nanoparticles and  

specific heat of  Cu   nanoparticles. 

The following table shows the thermo- physical properties of base fluid (blood) and 

nano particles Cu and  𝐴𝑙2𝑂3. 
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 Table 1. Thermo-physical properties of base fluid (Blood) & (Water) and nanoparticles 𝐴𝑙2𝑂3 and 

Cu 

Physical properties Blood / base fluid Water/base fluid 𝑨𝒍𝟐𝑶𝟑(𝝓𝟏) Cu(𝝓𝟐) 

𝜌 ( 𝑘𝑔 𝑚−3) 1050 997 3970 8933 

𝐶𝑝( 𝐽 𝑘𝑔−1 𝐾−1) 3617 4180 765 385 

𝐾( 𝑊 𝑚−1 𝐾−1) 0.25 0.6071 40 400 

 

3 Dimensionless analysis and wall transformation: - 

We define the non-dimensional variables: - 

𝑥 =  𝜆𝑥∗,  𝑦 = 𝑑𝑦∗,   𝑢 =  𝑐𝑢∗,   𝑣 =
𝑐𝑑

𝜆
𝑣∗,    𝑝 =

𝜇𝑓 𝑐 𝜆

𝑑2 𝑝∗,   𝑡 =  
𝜆

𝑐
 𝑡∗ ,   𝑆 =  

𝑠

𝑑
 ,  

𝜓 = 𝑐𝑑 𝜓∗ ,      

   𝑇 = 𝑇𝑢 + 𝜃(𝑇𝑙 − 𝑇𝑢)                                                                                                                             (2.4) 

Where  𝜓  is the stream function { 𝑢 = 𝜓𝑦  ,  𝑣 = −𝜓𝑥   } and  𝜆 is the wavelength. 

By substitution in (2.3) we get (dropping the stars) :- 

𝑅𝑒𝐸1𝐸2𝛿(𝜓𝑦𝜓𝑦𝑥 − 𝜓𝑥𝜓𝑦𝑦) = −𝐸2𝑝𝑥 + 𝜓𝑦𝑦𝑦 + 𝛿2𝜓𝑦𝑥𝑥   ,                                     (2.5)      

𝑅𝑒𝐸1𝐸2𝛿3(𝜓𝑦𝜓𝑥𝑥 − 𝜓𝑥𝜓𝑦𝑥) = 𝐸2𝑝𝑦 + 𝛿2(𝜓𝑥𝑦𝑦 + 𝛿2𝜓𝑥𝑥𝑥),                          (2.6) 

𝛿(𝜓𝑦𝜃𝑥 − 𝜓𝑥𝜃𝑦) =
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟𝑅𝑒
(𝛿2𝜃𝑥𝑥 + 𝜃𝑦𝑦) ,                                                                      (2.7) 

Were: 

𝛿(wave number ) =
𝑑

𝜆
,   𝑅𝑒 =

 𝑐𝑑

𝜈𝑓
 (Reynolds number), 

 𝑃𝑟 =
𝜈𝑓

𝛼𝑓
(Prandtl number) 
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𝜈𝑓 =

𝜇𝑓

𝜌𝑓
 (kinematics viscosity of the base fluid(blood)) 

 𝐸1 = (1 − 𝜙2) {1 − (1 −
𝜌𝑠1

𝜌𝑓
) 𝜙1} + 𝜙2

𝜌𝑠2

𝜌𝑓
 ,  

 𝐸2 = (1 − 𝜙1)5 2⁄ (1 − 𝜙2)5 2⁄    

 The subscripts 𝑥, 𝑦  refers to the corresponding partial differentiation as long as in 

what follows. In this paper we study the effects of inertia and curvature at second 

order with respect to of 𝛿 

We can eliminate the pressure from the previous equations (2.5) and (2.6) by cross 

differentiation so the equations (2.5), (2.6) and (2.7) become: - 

𝑅𝑒𝐸1𝐸2𝛿(∇2𝜓𝑥 − 𝜓𝑥∇2𝜓𝑦) = 𝜓𝑦𝑦𝑦𝑦 + 2𝛿2𝜓𝑦𝑦𝑥𝑥 + 𝛿4𝜓𝑥𝑥𝑥𝑥)  , 

 𝛿(𝜓𝑦𝜃𝑥 − 𝜓𝑥𝜃𝑦) =
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
 ∇2𝜃                                                                                        (2.7) 

Where ∇2= 𝛿2 𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
   ,  we introduce the boundary conditions for the 

flow by 

𝜓 =
𝑞

2
   at   𝑦 = 𝜂 = 1 + 𝑆(𝑥)         ,          𝜃 = 0   

𝜓 = −
𝑞

2
   at   𝑦 = −𝜂 = −1 − 𝑆(𝑥)      ,       𝜃 = 1                                                      (2.8) 

 𝜓𝑦 = −1   at  𝑦 = 𝜂  and  𝑦 = −𝜂 

Where  𝑞  represents the non-dimensional flow rate in the wave frame at any axial 

station of the symmetric channel. 
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 Introducing the transformation of the domain of the variable cross section 

symmetric channel into a channel with straight walls by  

𝜁 = 𝑥           𝜉 =
𝑦

𝜂(𝑥)
                                                                                                                               (2.9) 

These   relations transform  the channel walls  𝑦 = 𝜂(𝑥)  and   𝑦 = −𝜂(𝑥)    into     

𝜉 = ±1 From  equation (2.7) we note that   𝜂(𝑥)    𝑎𝑛𝑑   −𝜂(𝑥)   it must belong 

to  the  class of  4th order  continuously  differentiable functions. 

Then from the equations (2.7) and (2.9) we get  

𝑅𝑒𝐸1𝐸2𝛿

𝜂
(𝜓𝜉∇̅2𝜓𝜁 − 𝜓𝜁∇̅2𝜓𝜉) = ∇̅2∇̅2𝜓  ,                                                                    (2.10) 

 
𝛿

𝜂
(𝜓𝜉𝜃𝜁 − 𝜓𝜁𝜃𝜉) =

𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
 ∇̅2𝜃 .                                                                                   (2.11)        

Where: 

 ∇̅2= ( 
1

𝜂2 + 𝛿2𝜉2 𝜂′2

𝜂2
)

𝜕2

𝜕𝜉2 + 𝛿2 𝜕2

𝜕𝜁2 − 2𝛿2𝜉
𝜂′

𝜂
 

𝜕2

𝜕𝜁𝜕𝜉
+ (2𝛿2𝜉

𝜂′2

𝜂2 − 𝛿2𝜉
𝜂′′

𝜂
)

𝜕

𝜕𝜉
        

                                                                                                                                                                                  (2.12) 

Where the prime ( ′ ) refers to the ordinary differentiation with respect to 𝜁.in this case 

the corresponding boundary conditions on the walls are 

𝜓 =
𝑞

2
           at   𝜉 = 1          ,          𝜃 = 0 

𝜓 = −
𝑞

2
       at   𝜉 = −1      ,           𝜃 = 1                                                                                     (2.13) 

 𝜓𝜉 = −𝜂    at  𝜉 = ±1, 
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Also , the velocity components can be expressed as follow  

     𝑢 =
1

𝜂
 𝜓𝜉      ,   𝑣 = − 𝜓𝜁 + 𝜉

𝜂′

𝜂
 𝜓𝜉       

Now, we show an asymptotic method of obtaining the solutions (2.10) and (2.11) 

satisfying the corresponding   the previous boundary conditions (2.13)  

3 Flow Field: - 

In this section we adopt a perturbation method with respect to wave number (𝛿) as the 

parameter, is developed. 

stream function (𝜓) and Heat transfer (𝜃) 

we can write the stream function  𝜓 as follows  

 𝜓 = ∑ 𝛿𝑛∞
𝑛=0 𝜓𝑛 ,             𝜃 = ∑ 𝛿𝑛∞

𝑛=0 𝜃𝑛                                                                                    (3.1)                                                                                                    

This expansion takes into account both inertia (  𝑅𝑒  ) and curvature ( 𝛿 ) effects  up to 

second order so, the method described in this paper is  different from what is mentioned 

in Jaffrin [11] , Manton [13] and Usha and  Ramachandra  Rao [14] 

The equations  (2.10)  and  (2.11) that we obtained through the domain transformation 

are becoming  very complex , but we have the boundary  condition  𝜉 = ±1  on  the 

walls are very much simplified so, we can find the solution  these equations in closed 

form easily .we can substitute from  (3.1) in the equations (2.10) ,(2.11) and (2.12)  and 

collecting  terms of equal powers with respect to ( 𝛿 ).we get the following sets of 

equations :- 

0th order   (𝛿0) :- 
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 1

𝜂4
 𝜓0𝜉𝜉𝜉𝜉 = 0   ⟹   𝜓0𝜉𝜉𝜉𝜉 = 0 ,  

𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒

1

𝜂2
 𝜃0𝜉𝜉 = 0                                                           (3.2) 

Boundary conditions:- 

 𝜓0(−1) = −
𝑞

2
 ,                    𝜃0(−1) = 1 

 𝜓0(1) =
𝑞

2
 ,                           𝜃0(1) = 0 ,

  

𝜓0𝜉 = −𝜂    at     𝜉 = −1                                                                                                                           (3.3)                                                                          

𝜓0𝜉 = −𝜂    at     𝜉 = 1  

1st order   (𝛿1) :- 

𝜓1𝜉𝜉𝜉𝜉 = 𝑅𝑒𝐸1𝐸2𝜂[  𝜓0𝜉𝜓0𝜁𝜉𝜉 − 𝜓0𝜁𝜓0𝜉𝜉𝜉] − 2𝑅𝑒𝐸1𝐸2𝜂′[𝜓0𝜉𝜓0𝜉𝜉] , 

    
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒

1

𝜂2  𝜃1𝜉𝜉 =
1

𝜂
(𝜓0𝜉𝜃0𝜁 − 𝜓0𝜁𝜃0𝜉)                                                                    (3.4) 

Boundary conditions  :- 

 𝜓1(−1) = 0,    𝜃1(−1) = 0 

 𝜓1(1) = 0,   𝜃1(1) = 0  

𝜓1𝜉 = 0    at     𝜉 = −1                                                                                                                                   (3.5)                                                                          

𝜓1𝜉 = 0    at     𝜉 = 1  

2nd order   (𝛿2) :- 

 𝜓2𝜉𝜉𝜉𝜉 = 𝑅𝑒𝐸1𝐸2𝜂{𝜓0𝜉𝜓1𝜁𝜉𝜉 − 𝜓0𝜁𝜓1𝜉𝜉𝜉 +  𝜓1𝜉𝜓0𝜁𝜉𝜉 − 𝜓1𝜁𝜓0𝜉𝜉𝜉} −

2𝑅𝑒𝐸1𝐸2𝜂′{𝜓0𝜉𝜓1𝜉𝜉 +                     𝜓1𝜉𝜓0𝜉𝜉} − 2𝜂2𝜓0𝜁𝜁𝜉𝜉 + 8𝜂𝜂′𝜓0𝜁𝜉𝜉 −

{12𝜂′2
− 4𝜂𝜂′′}𝜓0𝜉𝜉 + 4𝜉𝜂𝜂′𝜓0𝜁𝜉𝜉𝜉  

                  −2{6𝜉𝜂′2
−   𝜉𝜂𝜂′′}𝜓0𝜉𝜉𝜉  
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 𝜃2𝜉𝜉 =
1

4

(𝜂𝜂′2
+𝜂2𝜂′′)

 (
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)2

[
𝜉3

6
−

𝜉5

20
− 7

𝜉

6
] [(

𝜂

2
+

3𝑞

4
) − 𝜉2 (

3𝜂

2
+

3𝑞

4
)] +

𝜂2𝜂′2

8(
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)2

(𝜉3 − 𝜉) [
𝜉2

2
−

𝜉4

4
−

7

6
] +

𝜂 𝑅𝑒𝐸1𝐸2

2(
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

𝜉 [
3

280
(2𝜂𝜂′2

+ 𝜂2𝜂′′) +

11

560
𝑞(𝜂′2

+ 𝜂𝜂′′) +
3

224
𝑞2𝜂′′] −  

𝜂 𝑅𝑒𝐸1𝐸2

2(
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

𝜉3 [
1

35
(2𝜂𝜂′2

+ 𝜂2𝜂′′) +

27

560
𝑞(𝜂′2

+ 𝜂𝜂′′) +
33

1120
𝑞2𝜂′′] +

𝜂 𝑅𝑒𝐸1𝐸2

2(
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

𝜉5 [
1

40
(2𝜂𝜂′2

+ 𝜂2𝜂′′) +

3

80
𝑞(𝜂′2

+ 𝜂𝜂′′) +
3

160
𝑞2𝜂′′] −

𝜂 𝑅𝑒𝐸1𝐸2

2(
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

𝜉7 [
1

140
(2𝜂𝜂′2

+ 𝜂2𝜂′′) +

1

112
𝑞(𝜂′2

+ 𝜂𝜂′′) +
3

1120
𝑞2𝜂′′] −

𝜉𝜂𝜂′′

2
+ 𝜉𝜂′2

                                                               (3.6)  

Boundary conditions:- 

 𝜓2(−1) = 0 , 𝜃2(−1) = 0 

 𝜓2(1) = 0  

𝜃2(1) = 0 

𝜓2𝜉 = 0    at     𝜉 = −1                                                                                                                                 (3.7)                                                                          

𝜓2𝜉 = 0  at     𝜉 = 1  

Then  the solutions of  0th order   (𝛿0)  , 1st order   (𝛿1)  and  2nd order   (𝛿2) satisfying  the  

corresponding boundary conditions  are  :- 

 𝜓0 =
𝜉

2
(𝜂 +

3𝑞

2
) −

𝜉3

2
(𝜂 +

𝑞

2
),   𝜃0 =

1

2
(1 − 𝜉) 
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 𝜓1 = 𝑅𝑒𝐸1𝐸2 (

3𝜂2𝜂′

280
+

11𝑞𝜂𝜂′

560
+

3𝑞2𝜂′

224
) 𝜉 − 𝑅𝑒𝐸1𝐸2 ∗ (

𝜂2𝜂′

35
+

27𝑞𝜂𝜂′

560
+

33 𝑞2𝜂′

1120
) 𝜉3 + 𝑅𝑒𝐸1𝐸2(

𝜂2𝜂′

40
+            

3𝑞𝜂𝜂′

80
+

3𝑞2𝜂′

160
)𝜉5 − 𝑅𝑒𝐸1𝐸2(

𝜂2𝜂′

140
+

𝑞𝜂𝜂′

112
+

3𝑞2𝜂′

1120
)𝜉7), 

 𝜃1 =
𝜂𝜂′

4(
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

[
𝜉3

6
−

𝜉5

20
− 7

𝜉

6
] 

𝜓2 = (
𝑓2

120
+ (𝑅𝑒𝐸1𝐸2)2 ∗ (

𝑓3

120
+

𝑓4

420
+

𝑓5

1008
+

𝑓6

1980
))𝜉 − (

𝑓2

60
+ (𝑅𝑒𝐸1𝐸2)2 ∗

(
𝑓3

60
+

𝑓4

280
+

𝑓5

756
+

𝑓6

1584
))𝜉3 + (

𝑓2+(𝑅𝑒𝐸1𝐸2)2∗𝑓3

120
)𝜉5 +

(𝑅𝑒𝐸1𝐸2)2∗𝑓4

840
𝜉7 +

(𝑅𝑒𝐸1𝐸2)2∗𝑓5

3024
𝜉9 +

(𝑅𝑒𝐸1𝐸2)2∗𝑓6

7920
𝜉11), 

  𝜃2 =
1

4

(𝜂𝜂′2
+𝜂2𝜂′′)

 (
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

2 (
𝜂

2
+

3𝑞

4
) [

𝜉5

120
−

𝜉7

840
− 7

𝜉3

36
+

59𝜉

315
] −

1

4

(𝜂𝜂′2
+𝜂2𝜂′′)

 (
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

2 (3
𝜂

2
+

3𝑞

4
) [

𝜉7

252
−

𝜉9

1440
− 7

𝜉5

120
+

37 𝜉

672
] +

𝜂2𝜂′2

8(
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

2 [
𝜉7

56
−

𝜉9

288
−

𝜉5

12
− 7

𝜉3

36
+

59 𝜉

224
] +

𝜂 𝑅𝑒𝐸1𝐸2

12(
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

(𝜉3 − 𝜉) [
3

280
(2𝜂𝜂′2

+ 𝜂2𝜂′′) +
11

560
𝑞(𝜂′2

+ 𝜂𝜂′′) +

3

224
𝑞2𝜂′′] −  

𝜂 𝑅𝑒𝐸1𝐸2

40(
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

(𝜉5 − 𝜉) [
1

35
(2𝜂𝜂′2

+ 𝜂2𝜂′′) +
27

560
𝑞(𝜂′2

+

𝜂𝜂′′) +
33

1120
𝑞2𝜂′′] +

𝜂 𝑅𝑒𝐸1𝐸2

84(
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

(𝜉7 − 𝜉) [
1

40
(2𝜂𝜂′2

+ 𝜂2𝜂′′) +

3

80
𝑞(𝜂′2

+ 𝜂𝜂′′) +
3

160
𝑞2𝜂′′] −

𝜂 𝑅𝑒𝐸1𝐸2

144(
𝛼ℎ𝑛𝑓

𝛼𝑓

1

𝑃𝑟 𝑅𝑒
)

(𝜉9 − 𝜉) [
1

140
(2𝜂𝜂′2

+

𝜂2𝜂′′) +
1

112
𝑞(𝜂′2

+ 𝜂𝜂′′) +
3

1120
𝑞2𝜂′′] −

𝜂𝜂′′

12
(𝜉3 − 𝜉) +

𝜂′2

6
(𝜉3 − 𝜉) 
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The expressions for  𝑓1 , 𝑓2  ,  𝑓3  ,  𝑓4 ,  𝑓5  are given in Appendix (1) . solutions of  0th 

order   (𝛿0)  , 1st order   (𝛿1)  and  2nd order   

(𝛿2)……………………………………………………………………………… 

The flux at any axial station in the  fixed frame (�̅�, �̅�) is  

𝑄 = ∫ (𝑢 + 1) 𝑑𝑦 
𝜂

−𝜂
= ∫ (𝑢) 𝑑𝑦

𝜂

−𝜂
+   ∫  𝑑𝑦

𝜂

−𝜂
= 𝑞 + 2𝜂 . 

Also, the time mean flow rate ( the quantity  of  practical interest )  

�̅� =
1

𝑇
∫ 𝑄 𝑑𝑡 

𝑇

0
=

1

𝑇
∫ (𝑞 + 2𝜂) 𝑑𝑡 

𝑇

0
= 𝑞 + 2 , 

As 𝜂 is periodic function with period 𝑇(=
𝜆

𝑐
). 

4 Pumping Characteristics:- 

In peristaltic motion the pumping is always characterized by the relation between the 

time mean flow rate �̅�  to the pressure difference Δ𝑝 at the ends of the channel. With 

respect to the pressure 

 𝑝 = ∑ 𝛿𝑛∞
𝑛=0 𝑝𝑛                                                                                                                                                      (4.1) 

From equations (2.5)  & (2.6), we get 𝑝0 , 𝑝1 and  𝑝2 with the same the previous 

technique in stream function and heat transfer  

0th order   (𝛿0) :- 

𝑝0𝑥 =
1

𝐸2
𝜓0𝑦𝑦𝑦                                                                                                                                                        (4.2) 

𝑝0𝑦 = 0 .   

1th order   (𝛿1) :- 
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𝑝1𝑥 =

1

𝐸2
{𝜓1𝑦𝑦𝑦 − 𝑅𝑒𝐸1𝐸2(𝜓0𝑦𝜓0𝑦𝑥 − 𝜓0𝑥𝜓0𝑦𝑦)}                                                   (4.3) 

𝑝1𝑦 = 0 .   

2nd order   (𝛿2) :- 

 𝑝2𝑥 =
1

𝐸2
{𝜓2𝑦𝑦𝑦 + 𝜓0𝑦𝑥𝑥} − 𝑅𝑒𝐸1(𝜓0𝑦𝜓1𝑦𝑥 + 𝜓1𝑦𝜓0𝑦𝑥 − 𝜓0𝑥𝜓1𝑦𝑦 −

𝜓1𝑥𝜓0𝑦𝑦),                 (4.4) 

 𝑝2𝑦 = −
1

𝐸2
𝜓0𝑥𝑦𝑦  

We can calculate  𝑝0 , 𝑝1 and  𝑝2 from expressions  𝜓0 , 𝜓1 and 𝜓2 in the (x, y ) 

coordinate by using the transformation which transform the domain of variable cross 

section a symmetric channel into a channel with straight walls  

 𝑝0𝑥 = −
3𝑞

2𝐸2𝜂3 −
3

𝐸2𝜂2,    𝑝0𝑦 = 0                                                                            (4.5)  

𝑝1𝑥 = 𝐸1𝑅𝑒{
27𝑞2𝜂′

70  𝜂3 +
3𝑞𝜂′

35𝜂2 −
6𝜂′

35 𝜂
}    𝑝1𝑦 = 0                                                             (4.6) 

𝑝2𝑦 = −
9𝑞𝑦𝜂′

2𝐸2𝜂4 −
6𝑦𝜂′

𝐸2𝜂3 ,        

𝑝2𝑥 =  −
11  𝐸1

2𝐸2𝑅𝑒
2 𝜂′2

1225
+

9𝑞𝑦2𝜂′2

𝐸2𝜂5 +
9𝑦2𝜂′2

𝐸2𝜂4 −
21𝑞𝜂′2

10𝐸2𝜂3 +
78  𝐸1

2𝐸2𝑅𝑒
2𝑞3𝜂′2

13475𝜂3 −

18𝜂′2

5𝐸2𝜂2 +
13  𝐸1

2𝐸2𝑅𝑒
2𝑞2𝜂′2

13475𝜂2 −
2  𝐸1

2𝐸2𝑅𝑒
2𝑞𝜂′2

175𝜂
−

127  𝐸1
2𝐸2𝑅𝑒

2𝑞𝜂′′

11550
−

9𝑞𝑦2𝜂′′

4𝐸2𝜂4 −

3𝑦2𝜂′′

𝐸2𝜂3 +
3𝑞𝜂′′

20𝐸2𝜂2 −
117  𝐸1

2𝐸2𝑅𝑒
2𝑞3𝜂′′

26950𝜂2 +
6𝜂′′

5𝐸2𝜂
−

158  𝐸1
2𝐸2𝑅𝑒

2𝑞2𝜂′′

13475𝜂
−

166  𝐸1
2𝐸2𝑅𝑒

2𝜂 𝜂′′

40425
   .                                                                                                                                             (4.7) 

Where the prime ( ′ ) refers to the ordinary differentiation with respect to 𝑥. From these 

relations we have the pressure in x and y direction is a function of x, y up to second 

order (𝛿2), also we note that both 𝑝0𝑦  and  𝑝1𝑦  equal zero but 𝑝2𝑦  not equal zero. 
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We define the difference of the pressures averaged over the cross section at axial 

stations 𝑥 = 0  &  𝑥 = 𝐿 (length of the channel) the mean pressure difference ( 

Δ𝑝𝐿),  

 Δ𝑝𝐿 =
1

2𝜂𝑥=0
 ∫ 𝑝(0)𝑑𝑦 

𝜂𝑥=0

−𝜂𝑥=0
−

1

2𝜂𝑥=𝐿
∫ 𝑝(𝐿)𝑑𝑦 

𝜂𝑥=𝐿

−𝜂𝑥=𝐿
.                               (4.8) 

We assume that L is an integral multiple of  𝜆, so the pressure difference(  Δ𝑝 ) over 

𝜆 = 1 is  

Δ𝑝 =
1

𝜂𝑥=0
 ∫ (∫

𝜕𝑝

𝜕𝑥

𝜆

0
𝑑𝑥)𝑑𝑦

𝜂𝑥=0

−𝜂𝑥=0
.                                                                                (4.9) 

Where 𝜂 is periodic with period   𝜆 . from equations (4.2), (4.3),(4.4),(4.5),(4.6),(4.7) 

and (4.9) 

 Δ𝑝 = (Δ𝑝)0 + 𝛿 (Δ𝑝)1 + 𝛿2(Δ𝑝)2 + 𝑂(𝛿3). 

Where :- 

 (Δ𝑝)0 =  
1

𝜂𝑥=0
 ∫ (∫ 𝑝0𝑥

𝜆

0
𝑑𝑥)𝑑𝑦

𝜂𝑥=0

−𝜂𝑥=0
, 

 (Δ𝑝)1 =  
1

𝜂𝑥=0
 ∫ (∫ 𝑝1𝑥

𝜆

0
𝑑𝑥)𝑑𝑦

𝜂𝑥=0

−𝜂𝑥=0
,                                                                                                    (4.10) 

 (Δ𝑝)2 =  
1

𝜂𝑥=0
 ∫ (∫ 𝑝2𝑥

𝜆

0
𝑑𝑥)𝑑𝑦

𝜂𝑥=0

−𝜂𝑥=0
. 

The different integrals appearing in (4.10)  are given in appendix (2) which evaluated 

using the software package Mathematica 4.1and are presented in appendix (3)   .in this 

paper we prescribe the peristaltic waves on the wall by  

   𝜂 = 1 + 𝑎 cos 2𝜋𝑥,      Upper wall                                                                                                                                              (4.11) 
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 −𝜂 = −1 − 𝑎 cos 2𝜋𝑥                                Lower wall                    

Where 𝑎 is dimensionless amplitude of the wave .after calculating all the integrals we 

get the pressure  rise over 𝜆 = 1 which is independent of y. 

(Δ𝑝)0 = 
−6

𝐸2
{

1

(1−𝑎2)
(

3
2

)
+

(2+𝑎2)𝑞

4(1−𝑎2)
(

5
2

)
}, 

(Δ𝑝)1 = 0,

 

(4.12) 

(Δ𝑝)2 = 
−788

40425
𝜋2𝑎2 𝐸2 (𝑅𝑒𝐸1)2 −

16

175
𝜋2 𝑞 𝐸2 (𝑅𝑒𝐸1)2(1 − √1 − 𝑎2) −

  
232

2695
𝜋2𝐸2 𝑞2(𝑅𝑒𝐸1)2 (−1 +

1

√1−𝑎2
) 

−
156

13475
 𝜋2𝑎2𝑞3𝐸2(𝑅𝑒𝐸1)2

1

(1 − 𝑎2)(
3
2

)
−

96

5𝐸2
𝜋2  (−1 +

1

√1 − 𝑎2
)

−
36

5𝐸2
 𝜋2𝑎2𝑞

1

(1 − 𝑎2)(
3
2

)
  . 

We can write the pressure difference (  Δ𝑝 ) as follow  

 Δ𝑝 = 𝜑0 + 𝜑1𝑞 + 𝜑2𝑞2 + 𝜑3𝑞3 + 𝑂(𝛿3). 

Where 

 𝜑0 = 2{
−3

𝐸2(1−𝑎2)
(

3
2

)
− 0.009744  𝜋2𝑎2𝛿2𝐸2(𝑅𝑒𝐸1)2 −

48

5𝐸2
𝜋2𝛿2 (−1 +

1

√1−𝑎2
)}, 

 𝜑1 = 2{
−3(2+𝑎2)

4𝐸2(1−𝑎2)
(

5
2

)
−

18

5𝐸2
 

𝜋2𝑎2𝛿2

(1−𝑎2)
(

3
2

)
− 0.045708  𝜋2𝐸2(𝑅𝑒𝐸1)2𝛿2(1 −

√1 − 𝑎2)}, 
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  𝜑2 = 2{−0.043044  𝜋2𝐸2 𝛿2(𝑅𝑒𝐸1)2 (−1 +
1

√1−𝑎2
)}, 

 𝜑3 = 2{−0.005792 𝜋2𝑎2𝛿2𝐸2(𝑅𝑒𝐸1)2 1

(1−𝑎2)
(

3
2

)
}. 

We want to express the pressure difference in terms the mean flow rate �̅� = (𝑞 +

2) up to the 2nd order of  𝛿.we can write the pressure difference  

Δ𝑝 = ℰ0 + ℰ1�̅� + ℰ2�̅�2 + ℰ3�̅�3,                                                                                                  (3.21) 

Where 

 𝓔𝟎 = 𝝋𝟎 − 𝟐𝝋𝟏 + 𝟒𝝋𝟐 − 𝟖𝝋𝟑, 
𝓔𝟏 = 𝝋𝟏 − 𝟒𝝋𝟐 + 𝟏𝟐𝝋𝟑,  
𝓔𝟐 = 𝝋𝟐 − 𝟔𝝋𝟑,  
𝓔𝟑 = 𝝋𝟑.  

We note that the coefficients 𝝋𝟎, 𝝋𝟏, 𝝋𝟐  and 𝝋𝟑  are functions of the non-

dimensional parameters 𝜹, 𝒂 and 𝑹𝒆. From the relations (4.12) we note 

that (𝚫𝒑)𝟏 = 𝟎, then we find no term proportional with 𝑹𝒆 .if we put  𝑹𝒆 = 𝟎 

, 𝜹 ≠ 𝟎  we get streamline curvature effects. But if we put  𝜹 = 𝟎 , 𝑹𝒆 ≠ 𝟎   this 

case isn't possible . 

5 Shear stress at the walls of the channel :- 

in this section we describe the shear stress distribution on the upper and lower walls of 

the channel which is a physical quantity of interest in the flows of  uniform  cross section  

With respect to upper wall at 𝑦 =  𝜂(𝑥), the tangential stress of the symmetric 

channel is given by  

 𝑇 = (ℴ𝑥𝑦 {1 − {
𝑑𝜂

𝑑𝑥
}

2

} + {ℴ𝑦𝑦 − ℴ𝑥𝑥} ∗
𝑑𝜂

𝑑𝑥
     )           ( 1 + {

𝑑𝜂

𝑑𝑥
}

2

⁄ )                                                                               

(5.1) 
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 Where 𝓸𝒙𝒙 , 𝓸𝒙𝒚  and 𝓸𝒚𝒚 are stress tensor's components and the shear stress tensor 

for the motion is  

𝓸𝒊𝒋 = −𝒑𝜹𝒊𝒋 + 𝟐𝝁𝒆𝒊𝒋,  

Then 

 𝓸𝒙𝒙 = −𝒑 + 𝟐𝝁𝒆𝒙𝒙 = −𝒑 + 𝟐 𝝁
𝝏𝒖

𝝏𝒙
== −𝒑 + 𝟐 𝝁𝝍𝒚𝒙, 

 

 ℴ𝑦𝑦 = −𝑝 + 2𝜇𝑒𝑦𝑦 = −𝑝 + 2 𝜇
𝜕𝑣

𝜕𝑦
= −𝑝 − 2 𝜇𝜓𝑥𝑦 ,                                              (5.2) 

 ℴ𝑥𝑦 = 2𝜇𝑒𝑥𝑦 =  𝜇(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) = 𝜇(𝜓𝑦𝑦 − 𝜓𝑥𝑥). 

We introduce  the  non-dimensional for shear stress distribution  

 𝑇 =
𝜇𝑐

𝑑
𝜏, 

 𝜏(𝑥, 𝑦) = 𝜏0(𝑥, 𝑦) + 𝜹𝜏1(𝑥, 𝑦) + 𝜹𝟐𝜏2(𝑥, 𝑦) + 𝑜(𝜹𝟑),                                          (5.3) 

Where 𝜏0 = 𝜓0𝑦𝑦 ,      𝜏1 = 𝜓1𝑦𝑦 ,                   𝜏2 = 𝜓2𝑦𝑦 − 𝜓0𝑥𝑥 − 2𝜓0𝑦𝑦 (
𝑑𝜂

𝑑𝑥
)

2

−

4𝜓0𝑥𝑦(
𝑑𝜂

𝑑𝑥
). 

In order to transform (x,y) system to (𝜁, 𝜉), we using the transformation   (2.9) 

So the shear stress is      

 𝜏(𝜁, 𝜉) = 𝜏0(𝜁, 𝜉) + 𝜹𝜏1(𝜁, 𝜉) + 𝜹𝟐𝜏2(𝜁, 𝜉) + 𝑜(𝜹𝟑).                                              (5.4) 

By substituting for 𝜓0, 𝜓1  , 𝜓2 into (5.4) ,  and evaluate at the wall   𝜉 = 1 , we get  

 𝜏(𝜁, 𝜉) = −
6𝜉(

𝑞

4
+

𝜂

2
)

𝜂2 + 𝛿 ∗
1

𝜂2 (−42𝑅𝑒𝜉5𝑒1𝑒2 (
3𝑞2𝜂′

1120
+

1

112
𝑞𝜂𝜂′ +

1

140
𝜂2𝜂′) + 20𝑅𝑒𝜉3𝑒1𝑒2 (

3

160
𝑞2𝜂′ +

3

80
𝑞𝜂𝜂′ +

1

40
𝜂2𝜂′) −

6𝑅𝑒𝜉𝑒1𝑒2 (
33𝑞2𝜂′

1120
+

27

560
𝑞𝜂𝜂′ +

1

35
𝜂2𝜂′)) + 𝛿2 ∗
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(
1

5174400𝜂2 (−2 (−776160𝑞(10 + 𝜉(−7 + 30(−1 + 𝜉)𝜉)) +

3𝑅𝑒
2𝑞3𝜉(12333 + 77𝜉2(−570 + 612𝜉2 − 270𝜉4 + 35𝜉6))𝑒1

2𝑒2
2 +

4𝜉𝜂 (−388080(4 + 5𝜉(−4 + 3𝜉)) + 3𝑅𝑒
2𝑞2(4412 + 1155𝜉2(−19 +

29𝜉2 − 17𝜉4 + 3𝜉6))𝑒1
2𝑒2

2 + 11𝑅𝑒
2𝑒1

2𝑒2
2𝜂(28𝑞(24 + 5𝜉2(−33 + 63𝜉2 −

45𝜉4 + 11𝜉6)) + (213 + 7𝜉2(−255 + 531𝜉2 − 405𝜉4 +

110𝜉6))𝜂))) 𝜂′2
+ 𝜉𝜂 (−776160𝑞(−11 + 15𝜉2) + 3𝑅𝑒

2𝑞3(9837 +

77𝜉2(−420 + 414𝜉2 − 180𝜉4 + 25𝜉6))𝑒1
2𝑒2

2 + 4𝜂 (−776160(−2 +

5𝜉2) + 4𝑅𝑒
2𝑞2(3138 + 385𝜉2(−33 + 45𝜉2 − 27𝜉4 + 5𝜉6))𝑒1

2𝑒2
2 +

𝑅𝑒
2𝑒1

2𝑒2
2𝜂(7𝑞(1268 + 55𝜉2(−111 + 189𝜉2 − 141𝜉4 + 35𝜉6)) +

2(809 + 77𝜉2(−75 + 177𝜉2 − 165𝜉4 + 50𝜉6))𝜂))) 𝜂′′)) + 𝑜(𝜹𝟑). 

Similarly we can compute the shear stress at the lower wall at 𝜉 = −1. 

6 Rate of working of wall of channel :- 

We can calculate the energy which pumps fluid through the channel by peristalsis 

comes  from the working of the channel wall against the radial force(𝑭) exerted by the 

fluid on the wall of the channel. But the axial force exerted by the fluid it has no effect 

on the wall due to no axial velocity on the wall of the channel. we consider the motion 

in the wave frame (𝑥, 𝑦) 

the radial force(𝑭) exerted by the fluid on the wall of the channel per unit area acting 

on the fluid at upper wall at 𝑦 =  𝜂(𝑥),  

 𝑭 = {ℴ𝑦𝑦 − ℴ𝑥𝑦𝛿
𝑑𝜂

𝑑𝑥
 }         ⁄ { 1 + 𝛿𝟐 {

𝑑𝜂

𝑑𝑥
}

2
}𝟏/𝟐   

Where the stress tensor is given by    𝓸𝒊𝒋 = −𝒑𝜹𝒊𝒋 + 𝟐𝝁𝒆𝒊𝒋,  



 

 

515 
 

 

 

Nonlinear and curvature effects on peristaltic flow of (Cu–𝐀𝐥𝟐𝐎𝟑) Hybrid Nanofluid in a Channel with 

Heat Transfer 

 Where   𝓸𝒙𝒚  and 𝓸𝒚𝒚 are stress tensor's components Then 

ℴ𝑦𝑦 = −𝑝 + 2𝜇𝑒𝑦𝑦 = −𝑝 + 2 𝜇
𝜕𝑣

𝜕𝑦
= −𝑝 − 2 𝜇𝜓𝑥𝑦 ,                                                                                    

 ℴ𝑥𝑦 = 2𝜇𝑒𝑥𝑦 =  𝜇(
𝜕𝑢

𝜕𝑦
+

𝜕𝑣

𝜕𝑥
) = 𝜇(𝜓𝑦𝑦 − 𝜓𝑥𝑥). 

The net rate of working of the wall over a wavelength  𝜆 is  

𝑊 = ∫ (
2𝜋𝜂𝜇𝑓

𝜌𝑓
)𝐹 𝑑𝑥 

𝜆

0
 . 

7. Discussion of the results 

 7.1. Trapping phenomenon  

 

(a) 

 

(b) 
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(c) 

 

Fig(1).curvature effects on streamlines for 𝑎 = 0.6  , 𝑎 = 0 ,  𝑞 = −1.07,   𝑅𝑒 = 0,  𝛿 = 0,  

𝛿 = 0.1 ,  𝜙1 = 0.1 , 𝜙2 = 0.03  with (a) 𝛿 = 0 , 𝑎 = 0.6     -  (b) 𝛿 = 0.1 , 𝑎 = 0.6     

-   (c) 𝛿 = 0 , 𝑎 = 0      

Trapping is an important phenomenon in peristaltic motion; in a reference frame 

(moving frame) moving with the wave speed 𝑐 we observed that the streamlines split 

to trap a bolus of fluid under certain conditions. We note that the streamline pattern for 

hybrid nano-fluid With  𝑎 = 0.6, 𝑞 = −1.07, 𝑅𝑒 = 0, 𝛿 = 0,  𝛿 = 0.1 ,  

𝜙1 = 0.1 , 𝜙2 = 0.03  as shown  in Fig (1). The centre streamline 𝜓 = 0 split 

to trap a bolus of hybrid nano-fluid as shown in Fig (1b) for 𝛿 = 0.1, but there is no 

trapped bolus in Fig (1a) at 𝛿 = 0, since 𝛿 give us the curvature effects .so we deduce 

the limits of trapping with 𝛿 = 0 the details in [23], since 𝛿(wave number ) =
𝑑

𝜆
 i.e., 𝜆 → ∞  this mean that there is no wave so we get the behaviour of hybrid nano-



 

 

517 
 

 

 

Nonlinear and curvature effects on peristaltic flow of (Cu–𝐀𝐥𝟐𝐎𝟑) Hybrid Nanofluid in a Channel with 

Heat Transfer 

 fluid in Poiseuille flow as shown in Fig (1c).so we get the curvature effects is decreasing 

the minimize limit on �̅� (�̅� = 𝑞 + 2)  with respect to the center streamline trapping 

and this result is compatible with[11] . 

(a) (b) 

(c) 
(d) 

Fig.(2).Inertia & viscous effects on streamlines for 𝑎 = 0.7  , 𝑞 = −0.8,  𝛿 = 0.01,  𝜙1 =

0.1 , 𝜙2 = 0.03  with (a)  𝑅𝑒 = 0,                  (b)  𝑅𝑒 = 110,                (c)  𝑅𝑒 = 550,                        

(d)  𝑅𝑒 = 1000 

Fig.(2) shows the effects of inertia force that represented by Reynolds number  (𝑅𝑒) on 

trapping for 𝑎 = 0.7  , 𝑞 = −0.8,  𝛿 = 0.01,  𝜙1 = 0.1 , 𝜙2 = 0.03  .we 
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find in this figure when inertia forces are non-existent i.e.,  𝑅𝑒 = 0, the streamlines 

show converting trapping case from symmetric trapped into asymmetric trapped which 

moving towards the direction of upstream then reduce gradually as shown in Fig .2b, c  

and   d and this result also is compatible with[16] .in this paper we take Reynolds 

number  (𝑅𝑒) arbitrary so we can choose it very large as in case (d) 𝑅𝑒 = 1000   we 

note that there is another  eddy on the side of  downstream for a channel although the 

some expect  another  eddy on the side of  downstream for a tube from an engineering 

perspective only . 
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(a) (b) 

(c) 
(d) 

Fig. (3).Inertia & curvature effects on streamlines for  𝑎 = 0.7  , 𝑞 = −0.5,   𝛿 = 0.1,  𝜙1 =

0.1 ,   𝜙2 = 0.03  with (a)  𝑅𝑒 = 0,                  (b)  𝑅𝑒 = 110,                (c)  𝑅𝑒 = 550,                        

(d)  𝑅𝑒 = 1000 
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Fig. (3) Shows inertia force and curvature on the stream lines we must plotted the 

streamlines for = 0.7 , 𝑞 = −0.5 with different Reynolds numbers  for  𝛿 = 0.1 

(> 0.01 𝑎𝑠 𝑠𝑒𝑒𝑛 𝑖𝑛 𝑓𝑖𝑔𝑢𝑟 9) we find in  Fig. (3a) variation(asymmetry) in 

stream lines is caused by the forces of inertia (𝑅𝑒) and Fig. (3b)  we observed that The 

centre streamline 𝜓 = 0 split additionally four stagnation points 

𝑎𝑠 𝑠𝑒𝑒𝑛 𝑖𝑛 Fig. (3c) but Fig. (3d) the 2nd  eddy growths on the under stream 

side of the channel whereas Ramachandra Rao and Usha [14] there is The centre 

streamline 𝜓 = 0 spliting in addition to more than two stagnation points. 

Shear stress distributions: -  
 

Fig. (4).Shear stress on the upper wall with  𝑞 = −2,  𝜙1 = 0.1 ,   𝜙2 = 0.03   

(a) For various 𝛿                            (b)  For various 𝑅𝑒                       (c)  𝑅𝑒 = For various 𝛼 

 

Fig. (5).Shear stress on the lower wall with  𝑞 = −2,  𝜙1 = 0.1 ,   𝜙2 = 0.03   

(a) For various 𝛿                            (b)  For various 𝑅𝑒                              (c)  𝑅𝑒 = For various 𝛼 

   

(a) (b) (c) 
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 Both Fig. (4) and Fig. (5) show the shear stress distribution at the lower and upper walls  

of the channel which play an important role in the medical applications  .we note that 

in Fig. (4) shear stress distributions on the upper wall For various   curvature effects, 

inertia forces and the amplitude of the channel . in Fig. (4a) shear stress distributions 

increases with an increases curvature effects at 𝑋 = 0  in addition to symmetry the 

shear stress about  line  𝑋 = 0 which does not happen  in Fig. (4b) at increasing of 

Reynold's number .Also in Fig. (4c) shear stress distributions increases with an increases 

values of amplitude of the channel at𝑋 = 0, (𝜏 ≥ 0) in addition to symmetry the 

shear stress about  line  𝑋 = 0 .also from these figures we note changing in the sign 

of the shear stress that not mean flow separation because the velocity of the wall is 

limited  . Similarly Shear stress distribuation on the lower wall,  in Fig. (5a) shear stress 

distribution increases   with an increases curvature effects at 𝑋 = 0  in addition to 

symmetry the shear stress about  line  𝑋 = 0 which does not happen  in Fig. (5b) at 

increasing  of Reynold's number .Also in Fig. (5c) shear stress distributions increases 

with an increases values of amplitude of the channel at 𝑋 = 0, (𝜏 ≥ 0) in addition 

to symmetry the shear stress about  line  𝑋 = 0.From these figures we note changing 

in the sign of the shear stress 

These results is agreement with the numerical results which obtained in [16], [21]. 

Pumping (pressure drop characteristics):- 

In this section we study a distinctive characteristic of peristaltic motion for hybrid nano-

fluid is pumping that is the relationship between Δ𝑝 and �̅� which is summarized in 

Fig. (6) .we note that pressure rise (Δ𝑝) is  a function of 3rd degree of  time mean flow 

rate (�̅�) as seen in  (3.21) in addition to parameters Reynolds number(𝑅𝑒), wave 
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number(𝛿), wave amplitude(𝑎),solid volume fraction of nanoparticles of  Al2O3 and 

Cu (𝜙1, 𝜙2) ,base fluid density(𝜌𝑓), the density of  Al2O3 and Cu (𝜌𝑠1
 , 𝜌𝑠2

). 

Fig. (6-a) shows The variation of pressure gradient Δ𝑝 with time mean flow rate  �̅� 

with given𝛿 = 0.1, 𝑎 = 0.2, 𝜙1 = 0.1 and 𝜙2 = 0.03 for different values 

of  Reynolds number(𝑅𝑒 = 0,100,200,400) . We observed that at small value of 

Reynolds number𝑅𝑒 = 0, the graph ( Δ𝑝 - �̅�)is straight line and this linearity 

completely disappears at the large values of Reynolds number  like 200 or 

400.Moreever at  Δ𝑝 ≥ 0 and  �̅� ≥ 0 for large Reynolds number (𝑅𝑒 =

200,400) there is no any pumping  

 
Fig. (6-a).The variation of pressure gradient Δ𝑝 with time mean flow rate  �̅�  

In peristaltic motion the pumping is always characterized by the relation between the 

time mean flow rate �̅�  to the pressure difference Δ𝑝 at the ends of the channel. With 

respect to the pressure 

 𝑝 = ∑ 𝛿𝑛∞
𝑛=0 𝑝𝑛                                                                                                                       (4.1) 

0.5 0.5 1.0 1.5 2.0
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 From equations (2.5)  & (2.6), we get 𝑝0 , 𝑝1 and  𝑝2 with the same the previous 

technique in stream function and heat transfer  

0th order   (𝛿0) :- 

𝑝0𝑥 =
1

𝐸2
𝜓0𝑦𝑦𝑦  ,                                                                                                          (4.2) 

𝑝0𝑦 = 0 .   

1th order   (𝛿1) :- 

𝑝1𝑥 =
1

𝐸2
{𝜓1𝑦𝑦𝑦 − 𝑅𝑒𝐸1𝐸2(𝜓0𝑦𝜓0𝑦𝑥 − 𝜓0𝑥𝜓0𝑦𝑦)} ,               (4.3) 

𝑝1𝑦 = 0 .   

2nd order   (𝛿2) :- 

 𝑝2𝑥 =
1

𝐸2
{𝜓2𝑦𝑦𝑦 + 𝜓0𝑦𝑥𝑥} − 𝑅𝑒𝐸1(𝜓0𝑦𝜓1𝑦𝑥 + 𝜓1𝑦𝜓0𝑦𝑥 −

𝜓0𝑥𝜓1𝑦𝑦 − 𝜓1𝑥𝜓0𝑦𝑦),                                                                                              (4.4) 

 𝑝2𝑦 = −
1

𝐸2
𝜓0𝑥𝑦𝑦  

We can calculate  𝑝0 , 𝑝1 and  𝑝2 from expressions  𝜓0 , 𝜓1 and 𝜓2 in the (x, y ) 

coordinate by using the transformation which transform the domain of variable cross 

section a symmetric channel into a channel with straight walls  

 𝑝0𝑥 = −
3𝑞

2𝐸2𝜂3 −
3

𝐸2𝜂2                                                      𝑝0𝑦 = 0                                         (4.5)  

𝑝1𝑥 = 𝐸1𝑅𝑒{
27𝑞2𝜂′

70  𝜂3 +
3𝑞𝜂′

35𝜂2 −
6𝜂′

35 𝜂
}                         𝑝1𝑦 = 0                                              (4.6) 

𝑝2𝑦 = −
9𝑞𝑦𝜂′

2𝐸2𝜂4 −
6𝑦𝜂′

𝐸2𝜂3 ,        
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𝑝2𝑥 =  −
11  𝐸1

2𝐸2𝑅𝑒
2 𝜂′2

1225
+

9𝑞𝑦2𝜂′2

𝐸2𝜂5 +
9𝑦2𝜂′2

𝐸2𝜂4 −
21𝑞𝜂′2

10𝐸2𝜂3 +
78  𝐸1

2𝐸2𝑅𝑒
2𝑞3𝜂′2

13475𝜂3 −

18𝜂′2

5𝐸2𝜂2
+

13  𝐸1
2𝐸2𝑅𝑒

2𝑞2𝜂′2

13475𝜂2
−

2  𝐸1
2𝐸2𝑅𝑒

2𝑞𝜂′2

175𝜂
−

127  𝐸1
2𝐸2𝑅𝑒

2𝑞𝜂′′

11550
−

9𝑞𝑦2𝜂′′

4𝐸2𝜂4
−

3𝑦2𝜂′′

𝐸2𝜂3
+

3𝑞𝜂′′

20𝐸2𝜂2
−

117  𝐸1
2𝐸2𝑅𝑒

2𝑞3𝜂′′

26950𝜂2
+

6𝜂′′

5𝐸2𝜂
−

158  𝐸1
2𝐸2𝑅𝑒

2𝑞2𝜂′′

13475𝜂
−

166  𝐸1
2𝐸2𝑅𝑒

2𝜂 𝜂′′

40425
   .                                                                                                                                   (4.7) 

Where the prime ( ′ ) refers to the ordinary differentiation with respect to 𝑥. From these 

relations we have the pressure in x and y direction is a function of x, y up to second 

order (𝛿2), also we note thate both 𝑝0𝑦  and  𝑝1𝑦  equal zero but 𝑝2𝑦  not equal zero. 

We define the difference of the pressures averaged over the cross section at axial 

stations 𝑥 = 0  &  𝑥 = 𝐿 (length of the channel) the mean pressure difference ( 

Δ𝑝𝐿),  

 Δ𝑝𝐿 =
1

2𝜂𝑥=0
 ∫ 𝑝(0)𝑑𝑦 

𝜂𝑥=0

−𝜂𝑥=0
−

1

2𝜂𝑥=𝐿
∫ 𝑝(𝐿)𝑑𝑦 

𝜂𝑥=𝐿

−𝜂𝑥=𝐿
.                                                 (4.8) 

We assume that L is an integral multiple of  𝜆, so the pressure difference(  Δ𝑝 ) over 

𝜆 = 1 is  

Δ𝑝 =
1

𝜂𝑥=0
 ∫ (∫

𝜕𝑝

𝜕𝑥

𝜆

0
𝑑𝑥)𝑑𝑦

𝜂𝑥=0

−𝜂𝑥=0
.                                                                                        (4.9) 

Where 𝜂 is periodic with period   𝜆 . from equations (4.2), (4.3),(4.4),(4.5),(4.6),(4.7) 

and (4.9) 

 Δ𝑝 = (Δ𝑝)0 + 𝛿 (Δ𝑝)1 + 𝛿2(Δ𝑝)2 + 𝑂(𝛿3). 

Where :- 

 (Δ𝑝)0 =  
1

𝜂𝑥=0
 ∫ (∫ 𝑝0𝑥

𝜆

0
𝑑𝑥)𝑑𝑦

𝜂𝑥=0

−𝜂𝑥=0
, 
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 (Δ𝑝)1 =  

1

𝜂𝑥=0
 ∫ (∫ 𝑝1𝑥

𝜆

0
𝑑𝑥)𝑑𝑦

𝜂𝑥=0

−𝜂𝑥=0
,                                                                                                    (4.10) 

 (Δ𝑝)2 =  
1

𝜂𝑥=0
 ∫ (∫ 𝑝2𝑥

𝜆

0
𝑑𝑥)𝑑𝑦

𝜂𝑥=0

−𝜂𝑥=0
. 

The different integrals appearing in (4.10)  are given in appendix (2) which evaluated 

using the software package Mathematica 4.1and are presented in appendix (3)   .in this 

paper we prescribe the peristaltic waves on the wall by  

   𝜂 = 1 + 𝑎 cos 2𝜋𝑥,                                 Upper wall                                                                             (4.11) 

−𝜂 = −1 − 𝑎 cos 2𝜋𝑥                                Lower wall                    

Where 𝑎 is dimensionless amplitude of the wave. after calculating all the integrals we 

get the pressure  rise over 𝜆 = 1 which is independent of y. 

(Δ𝑝)0 = 
−6

𝐸2
{

1

(1−𝑎2)
(

3
2

)
+

(2+𝑎2)𝑞

4(1−𝑎2)
(

5
2

)
}, 

(Δ𝑝)1 = 0,                                                                                                                                                       (4.12) 

(Δ𝑝)2 = 
−788

40425
𝜋2𝑎2 𝐸2 (𝑅𝑒𝐸1)2 −

16

175
𝜋2 𝑞 𝐸2 (𝑅𝑒𝐸1)2(1 − √1 − 𝑎2) −

  
232

2695
𝜋2𝐸2 𝑞2(𝑅𝑒𝐸1)2 (−1 +

1

√1−𝑎2
) 

−
156

13475
 𝜋2𝑎2𝑞3𝐸2(𝑅𝑒𝐸1)2

1

(1 − 𝑎2)(
3
2

)
−

96

5𝐸2
𝜋2  (−1 +

1

√1 − 𝑎2
)

−
36

5𝐸2
 𝜋2𝑎2𝑞

1

(1 − 𝑎2)(
3
2

)
  . 

We can write the pressure difference (  Δ𝑝 ) as follow  

 Δ𝑝 = 𝜑0 + 𝜑1𝑞 + 𝜑2𝑞2 + 𝜑3𝑞3 + 𝑂(𝛿3). 
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Were 

 𝜑0 = 2{
−3

𝐸2(1−𝑎2)
(

3
2

)
− 0.009744  𝜋2𝑎2𝛿2𝐸2(𝑅𝑒𝐸1)2 −

48

5𝐸2
𝜋2𝛿2 (−1 +

1

√1−𝑎2
)}, 

 𝜑1 = 2{
−3(2+𝑎2)

4𝐸2(1−𝑎2)
(

5
2

)
−

18

5𝐸2
 

𝜋2𝑎2𝛿2

(1−𝑎2)
(

3
2

)
− 0.045708  𝜋2𝐸2(𝑅𝑒𝐸1)2𝛿2(1 −

√1 − 𝑎2)}, 

  𝜑2 = 2{−0.043044  𝜋2𝐸2 𝛿2(𝑅𝑒𝐸1)2 (−1 +
1

√1−𝑎2
)}, 

 𝜑3 = 2{−0.005792 𝜋2𝑎2𝛿2𝐸2(𝑅𝑒𝐸1)2 1

(1−𝑎2)
(

3
2

)
}. 

We want to express the pressure difference in terms the mean flow rate �̅� = (𝑞 + 2) 

up to the 2nd order of  𝛿.we can write the pressure difference  

Δ𝑝 = ℰ0 + ℰ1�̅� + ℰ2�̅�2 + ℰ3�̅�3,                                                                                 (3.21) 

Were 

 𝓔𝟎 = 𝝋𝟎 − 𝟐𝝋𝟏 + 𝟒𝝋𝟐 − 𝟖𝝋𝟑, 
𝓔𝟏 = 𝝋𝟏 − 𝟒𝝋𝟐 + 𝟏𝟐𝝋𝟑,  
𝓔𝟐 = 𝝋𝟐 − 𝟔𝝋𝟑,  
𝓔𝟑 = 𝝋𝟑.  

We note that the coefficients 𝝋𝟎, 𝝋𝟏, 𝝋𝟐  and 𝝋𝟑  are functions of the non-

dimensional parameters 𝜹, 𝒂 and 𝑹𝒆. From the relations (4.12) we note 

that (𝚫𝒑)𝟏 = 𝟎, then we find no term proportional with 𝑹𝒆 .if we put  𝑹𝒆 = 𝟎 

, 𝜹 ≠ 𝟎  we get streamline curvature effects. But if we put  𝜹 = 𝟎 , 𝑹𝒆 ≠ 𝟎   this 

case isn't possible. 

Conclusions: - 
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 In the present analysis, we examine the effects curvature, inertia force, nano particles 

volume fraction, and heat source/sink of an incompressible, viscous fluid of (Cu–) 

hybrid nanofluid with heat transfer in an asymmetric channel with supple walls by 

peristaltic transport, also the two shape factors of the nanofluid were considered 

(spherical and cylindrical nanoparticles). The effects of various physical parameters are 

considered on the axial and normal velocities, streamlines, heat distribution, shear 

stress on the walls, Nusselt number, normal force, and entropy generation. The main 

outcomes of this study are summarized as follows: 

1. The physical properties of aluminum oxide nanoparticles improve the axial 

motion of (bio‐fluid) blood, while the physical properties of copper 

nanoparticles improve the normal motion of (bio‐fluid) blood, so the hybrid 

nanoparticles enhance the biological motion. 

2. The temperature of the fluid for hybrid nanofluid (blood model) is less than 

that for the clear fluid. So, the hybrid nanofluid gives us control over the 

temperature of the patients. 

3. The perturbation method solution obtained here, after we introduce the 

domain transformation, gives us improved accuracy for the discussion of 

several phenomena, such as pumping and trapping, and so on. 

4. An increase in solid volume fraction, heating source, Reynolds, and Prandtl 

numbers increases the Nusselt number. 

5. The fluid temperature increases for increasing values of wave amplitude, 

Reynolds, Prandtl numbers, and the heat source while decreases for increasing 

values of flow rate, sink heating, and solid volume fraction ϕ1 and ϕ2. 
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6. Shear stress of copper nanofluid is the highest due to the frictional force of 

copper is high. 

7. When the generated shear stress distribution on the vessel's blood wall 

exceeds a certain maximum limit (this is according to damaged blood 

constituents). In this case, the magnitude of the shear stress distribution has an 

important role in the process of molecular convective. 
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